Classification of oral bioavailability of drugs by machine learning approaches: a comparative study

نویسندگان

  • Rajnish Kumar
  • Anju Sharma
  • Pritish Varadwaj
  • Ausaf Ahmad
  • Ghulam Md Ashraf
چکیده

Oral Bioavailability is the rate and extent to which an active drug substance is absorbed and becomes available to the general circulation. A computational model for the prediction of oral bioavailability is a vital initial step in the drug discovery. It is decisive for selecting the promising compounds for the next level optimizations and recognition for the clinical trials. In the present investigation we aimed to perform the oral bioavailability prediction by comparing three machine learning methods i.e. Support Vector Machine (SVM) based kernel learning, Artificial Neural Network (ANN) and Bayesian classification approach. The overall prediction efficiency of SVM based model for the test set was 96.85%, whereas according to the Bayesian classifier and ANN methods prediction efficiency was found to be 92.19% and 94.53% respectively. Thus the present results clearly suggested that the SVM based prediction of oral bioavailability of drugs is more efficient binary classification approach for the data under consideration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Comparative Study of SVM and RF Methods for Classification of Alteration Zones Using Remotely Sensed Data

Identification and mapping of the significant alterations are the main objectives of the exploration geochemical surveys. The field study is time-consuming and costly to produce the classified maps. Therefore, the processing of remotely sensed data, which provide timely and multi-band (multi-layer) data, can be substituted for the field study. In this study, the ASTER imagery is used for altera...

متن کامل

Prostate cancer radiomics: A study on IMRT response prediction based on MR image features and machine learning approaches

Introduction: To develop different radiomic models based on radiomic features and machine learning methods to predict early intensity modulated radiation therapy (IMRT) response.   Materials and Methods: Thirty prostate patients were included. All patients underwent pre ad post-IMRT T2 weighted and apparent diffusing coefficient (ADC) magnetic resonance imagi...

متن کامل

Introducing Self-Nanoemulsifying Drug Delivery System to Increase the Bioavailability of Oral Medications

Due to low cost, ease of administration, and lack need for trained personnel, the oral route is the most convenient and accessible way to design different medicines that could be simply consumed by patients. Regardless of the great benefits of this route, the main challenge in the bioavailability of oral medications is gastrointestinal instability. Nanotechnology is used to improve the solubili...

متن کامل

Genetic Programming in Data Mining for Drug Discovery

Genetic programming (GP) is used to extract from rat oral bioavailability (OB) measurements simple, interpretable and predictive QSAR models which both generalise to rats and to marketed drugs in humans. Receiver Operating Characteristics (ROC) curves for the binary classifier produced by machine learning show no statistical difference between rats (albeit without known clearance differences) a...

متن کامل

Automatic road crack detection and classification using image processing techniques, machine learning and integrated models in urban areas: A novel image binarization technique

The quality of the road pavement has always been one of the major concerns for governments around the world. Cracks in the asphalt are one of the most common road tensions that generally threaten the safety of roads and highways. In recent years, automated inspection methods such as image and video processing have been considered due to the high cost and error of manual metho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013